\begin{tabular}{|c|c|c|c|}
\hline Multiplication \& Vocabulary \& \multicolumn{2}{|l|}{Multiply, times, count in multiple steps, double, how many times? Once, twice (scaling) repeated addition, array, lots of, groups of equal amounts, product, square numbers, cubed numbers, common multiples, common factors, prime numbers, BODMAS} \\
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Introduction of the = sign develop an understanding of 'equals'. \& \begin{tabular}{l}
Introduce the = sign and start with examples like \(5=5\) using different objects. \\
Use a balance to illustrate.
\end{tabular} \& Use the = sign in different places in pictorial problems ~sometimes have the total box at the beginning. Draw how many more you need to make the sets equal... \& \begin{tabular}{l}
Use the \(=\) sign in different places
\[
3=2+1 \quad 1+2=3
\] \\
Missing number questions
\end{tabular} \\
\hline Doubles to 10. \& \begin{tabular}{l}
~use concrete objects~ Lego/bricks in construction etc. \\
Place objects on a double mat \({ }^{\sim}\)
\end{tabular} \& \begin{tabular}{l}
Drawing the double~ \\
Double 4 is 8

\square \\
use dominoes to illustrate the double

 \&

Recall of double numbers. \\
Double matching games.
\end{tabular} \\

\hline Counting in multiples. \& \& | Counting tally marks to support counting in 5 s . |
| :--- |
| Using pictures to support counting up in multiples. | \& | Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$ |
| :--- |
| Looking for the patterns. | \\

\hline
\end{tabular}

Repeated addition.

Doubling by partitioning.		Draw base 10. Draw money.	$\int_{20}^{15} 10=30$
Two digits multiplied by one digit will be introduced using partitioning. TO x 0 HTO x O	$14 \times 6=$ Or use base 10/money.	$60+24=84$ Drawing the place value coins, base 10 or money. The calculation is 14×6. The children have put 14 into 6 groups and then calculated the answers using multiplication and/or repeated addition.	$\begin{aligned} & 14 \times 6 \\ & 10 \times 6=60 \quad 4 \times 6=24 \\ & 60+24=84 \end{aligned}$
Expanded column method(without carrying) The next step is to show the children the method of recording in a column format. The children will start by multiplying the ones, then the tens and then recombining.	32×3	$\begin{array}{lll} 32 \times 3 & 32 \times 3 \\ 2 \times 3 & \ddots & 90 \\ & 0 \times 36 \\ & 0 & 0 \\ \hline 90 \end{array}$	32×3 Short Multiplication Children who feel secure on this can be introduced to the compact method, without carrying.

Division	Vocabulary	Divide, share, group, half, fractions, divided by, left over/remainder, division facts, chunking, bus stop method, inverse, common factors, common multiples, BODMAS	
Objective and Strategies	Concrete	Pictorial	Abstract
Introduction of the = sign develop an understanding of 'equals'.	Introduce the = sign and start with examples like $5=5$ using different objects. Use a balance to illustrate.	Use the = sign in different places in pictorial problems-sometimes have the total box at the beginning. Draw how many more you need to make the sets equal...	Use the $=$ sign in different places $3=2+1 \quad 1+2=3$ -missing number questions
Sharing objects into groups.		Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$ Recall of division facts.
Finding a fraction of a number. Finding a half/quarter. Reinforce the connection between fractions and division.	concrete objects to share or group to find half/quarter/third etc. $12 \div 2=$	find $\frac{1}{2}$ of 16 Children encouraged to draw pictures to aid understanding.	Recall of halve numbers Understand the correspondence between doubles and halves.

See that division is the inverse of multiplication. Division within arrays.	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	$\because: \because: 0: 0$ $\because: 0:: 0$	Recall of facts Fact families Missing numbers e.g., $15 \div$? $=5$ KS2 Division will be introduced using visual arrays.
Division as grouping. Repeated subtraction.	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $15 \div 3=$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
TO $\div \mathrm{O}$ using the bus stop method. With this method you always start with the highest value digit. This will be extended to larger numbers (HTO $\div \mathrm{O}$) and decimals with no remainder.		Bus stop method: Children to follow the same method but encouraged to draw the place value coins if support still needed.	Bus stop method:

