| Addition | $\begin{aligned} & \hline \text { Vocabulary } \\ & \text { NB:H=hundreds/T=Tens/O=ones } \end{aligned}$ | number bonds, number line, add, more, plus, make, sum, total, altogether, double, how many more?, column addition, partition , counting on, efficient method, order of operations, increase |  |
| :---: | :---: | :---: | :---: |
| Objective and Strategies | Concrete | Pictorial | Abstract |
| Introduction of the = sign/develop understanding of 'equals'. | Introduce the = sign and start with examples like $5=5$ using different objects. <br> Use a balance to illustrate. | Use the = sign in different places in pictorial problems - sometimes have the total box at the beginning. <br> For example, draw how many more you need to make the sets equal. | Use the $=$ sign in different places For example $3=2+1 \quad 1+2=3$ throughout EY-KS1 and KS2. <br> - missing number problems are introduced in Year 1. <br> For example, $3+$ ? = 5 |
| Combining two or more parts to make a 'whole'. <br> Horizontal recording of an addition calculation. | Use different objects - toys/cubes/stones/shells etc. to combine two or more groups and develop the language of addition e.g. how many more? / How many altogether? / What is my total? Place the = sign in different places. <br> start to relate to the calculation $3+2+2=$ <br> 6 and how many more make 10 ? <br> Missing $6+\square=10$ number problems - <br> Children count out 6 cubes - how many more do I need to have 10 in total? | Word problems e.g. 'You have five apples and I have three apples. How many apples altogether?' <br> Initially, record how many in each set, then complete the calculation. Children/adult draw the apples. <br> Draw 6 circles - how many more do I need to make 10? | Word problems e.g. 'You have five apples and I have three apples. How many apples altogether?' <br> Introduce the symbols $3+2=$ <br> Note: children can still draw their own pictures if needed or use fingers - but will count all objects. <br> Matching games / loop games. <br> Missing number problems solved using fingers. |


| Partitioning a whole into 2 parts/ number bonds. | Looking at patterns, for example, using Multilink /Numicon <br> (4) <br> (I) <br> 5) | Looking at patterns - colouring combinations <br> 8 <br> 1 | Mental recall of number bonds. Manipulating number bonds e.g. if 1 know $3+4=7$, <br> I must know that $4+3=7$, <br> Also 7-4 $=3$ and $7-3=4$ <br> Fact families. <br> Writing all the number bonds systematically. <br> Interactive games. <br> Missing number problems |
| :---: | :---: | :---: | :---: |
| Counting on from the bigger number in ones. <br> Horizontal recording of an addition calculation. | $\square$ 3. $\qquad$ <br> To bridge from counting on, use concrete objects on a number line. Alternatively, use a bead string. | $9+?=15 \quad+1+1+1+1+1+1$ $9+6=15$ | Rapid mental recall of 'one more than'. <br> Mentally counting on to find the total. $\begin{aligned} & 9+6= \\ & 9-\text { in head - count on as child holds } \\ & \text { up finger }-10,11,12,13,14,15 \end{aligned}$ |
| Using mental skills to aid solving horizontal addition calculations. <br> For example: <br> Adding 3 single digit numbers by looking for | Use concrete objects to find the total of three single digit numbers. <br> Use knowledge of number bonds to find patterns. <br> For example: $4+7+6=17$ <br> Put 4 and 6 | Add together three groups of objects. Draw a picture to recombine the groups to make 10. | $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ <br> Add together three numbers, using knowledge of number |




| Subtraction | Vocabulary <br> NB:H=hundreds/T=Tens/O=ones | Subtract, subtraction, take-away, less than, less, minus, how many fewer? Count back, Half, find the difference, column method, efficient method, order of operations. |  |
| :---: | :---: | :---: | :---: |
| Objective and Strategies | Concrete | Pictorial | Abstract |
| Introduction of the = sign /develop understanding of equals. | Introduce the = sign and start with examples like $5=5$ using different objects. <br> Use a balance to illustrate. | Use the = sign in different places in pictorial problems - sometimes have the total box at the beginning. <br> Draw how many more you need to make the sets equal... | Use the $=$ sign in different places $3-2=1 \quad 1=3-2$ <br> Include missing number questions. |
| Taking away ones. - Horizontal recording of a subtraction calculation. | Use physical objects, counters, cubes etc. to show how objects can be taken away. $4-2=2$ <br> Songs using concrete objects/children | Cross out drawn objects to show what has been taken away. $15-3=12$ | Write a number sentence to record the calculation. $18-3=15$ $8-2=6$ |
| Counting back from a given number in ones. <br> - Horizontal recording of a subtraction calculation. | Start with 1 less. Use a number line to match the objects to the numbers. <br> 5-3 = <br> Lay out 5 cubes on a number line and take away 2. <br> Use bead strings / multilink to physically move back. | Use a number line to count back in ones. Not bridging 10 then bridging 10. $13-4=9$ | Mentally count back in ones from a given number. $8-3=$ <br> $8,7,6$, (use fingers to illustrate the 3 ) <br> 1 am left with 5 |


| Use number bonds (also known as fact families) to develop children's understanding of the relationship between addition and subtraction. | Use multilink to explore number bonds. <br> If 10 is the whole, and 6 is one of the parts. What is the other part? $10-6=$ | Use pictorial representation to show the relationship between number bonds. <br> Use picture cards to help create the fact families. | Write down fact families using 3 numbers If 1 know $9-2=7$ <br> Then $9-7=2$ $\begin{aligned} & 2+7=9 \\ & 7+2=9 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Find the difference. <br> Horizontal recording of a subtraction calculation. | Compare amounts and objects to find the difference. <br> Use cubes to build towers or make bars to find the difference. <br> Use basic bar models with objects to find the difference. | Count on to find the difference. For example, find the difference between 11 and 5 using a number line. <br> Draw bars to find the difference between 2 numbers. <br> Comparison Bar Models <br> Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. | Solve word problems involving 'finding the difference'. For example: <br> Hannah has 23 sandwiches, Helen has 19 sandwiches. Find the difference between the number of sandwiches. <br> 19 in head count up to 23 (may use fingers to help find the difference.) $20,21,22,23$ <br> The difference is 4. change will I have? |


| Counting back in steps of ones and tens. <br> - Horizontal recording of a subtraction calculation. | Use multilink, Base 10, bundles of objects, etc. to subtract a two digit number from another number. | Subtract on a number line by counting back in ones and tens. <br> For example, $57-23=34$ <br> Take the ones away first then the tens. | Mentally count back in ones and multiples of tens to subtract a two digit number. |
| :---: | :---: | :---: | :---: |
| Use partitioning to subtract two or three digit numbers. This will move onto column subtraction method without exchanging. <br> Column method. $\begin{aligned} & \text { TO - O } \\ & \text { TO - TO } \\ & \text { HTO - TO } \\ & \text { HTO - HTO ETC. } \end{aligned}$ | Use concrete objects as bundles to subtract groups of hundreds / tens / ones. <br> (100) <br> 132 <br> -22 children physically take away the ones then the tens | Drawing base 10/place value coins to help them move from the concrete to the abstract. | Write number sentences to show the partitioning of numbers. For example: <br> Mentally use the following method, which subtracts the ones then the tens. <br> 45 <br> -23 <br> 22 |



